
Journal of Computational Physics 209 (2005) 391–405

www.elsevier.com/locate/jcp
An adaptive method with rigorous error control for
the Hamilton–Jacobi equations. Part II: The

two-dimensional steady-state case q

Bernardo Cockburn *, Bayram Yenikaya

School of Mathematics, University of Minnesota, 206 Church Street S.E., Minneapolis, MN 55455, USA

Received 8 October 2004; received in revised form 7 February 2005; accepted 8 February 2005

Available online 21 June 2005
Abstract

In this paper, we devise and study an adaptive method for finding approximations to the viscosity solution of

Hamilton–Jacobi equations. The method, which is an extension to two space dimensions of a similar method previously

proposed for one space dimension, is studied in the framework of steady-state Hamilton–Jacobi equations with periodic

boundary conditions. It seeks numerical approximations whose L1-distance to the viscosity solution is no bigger than a

prescribed tolerance. A thorough numerical study is carried out which shows that a strict error control is achieved and

that the method exhibits an optimal computational complexity which does not depend on the value of the tolerance or

on the type of Hamiltonian.

� 2005 Elsevier Inc. All rights reserved.

Keywords: Adaptivity; A posteriori error estimate; Hamilton–Jacobi equations
1. Introduction

In this paper, we continue the study of adaptive methods for Hamilton–Jacobi equations began in [4] for

the one-dimensional case and extend it to two-dimensional problems of the same type. We present an

efficient adaptive method for approximating the viscosity solution of the following model steady-state

Hamilton–Jacobi equation:
0021-9991/$ - see front matter � 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2005.02.033

q Partially supported by the National Science Foundation (Grant DMS-0411254) and by the University of Minnesota

Supercomputing Institute.
* Corresponding author. Tel.: +1 612 625 2587; fax: +1 612 626 2017.

E-mail addresses: cockburn@math.umn.edu (B. Cockburn), yenikaya@math.umn.edu (B. Yenikaya).

mailto:cockburn@math.umn.edu
mailto:yenikaya@math.umn.edu

392 B. Cockburn, B. Yenikaya / Journal of Computational Physics 209 (2005) 391–405
uþ HðruÞ ¼ f in X ¼ ð0; 1Þ � ð0; 1Þ; ð1Þ

with periodic boundary conditions. For any given positive parameter s, the method seeks an approximation
uh satisfying the quality constraint
ku� uhkL1ðXhÞ 6 s; ð2Þ
where Xh is the set of nodes on which the approximate solution is computed. We show the efficiency and the

reliability of the method through extensive numerical experiments.

Let us briefly describe its main components. To find an approximation to the viscosity solution, we use

the monotone scheme introduced in [1] for unstructured triangular meshes. To verify whether or not the

quality of the approximation is acceptable, that is, to see whether or not the constraint (2) is satisfied,

we use an approximate version of the rigorous a posteriori error estimate obtained in [2], namely,
ku� uhkL1ðXÞ 6 UðuhÞ;
where U is a suitably defined non-linear functional which, roughly speaking, depends on the residual. The
last component is how to use the information of the residual, the above error estimate and the tolerance to

generate the mesh. Our method is not based on local mesh refinement; instead, it generates a new mesh at

every iteration step. In our experience, this seems to work better than the local mesh refinement strategies

that are usually used in adaptive algorithms. This approach enables us to generate meshes for which the

quality constraint (2) is satisfied with optimal complexity; a rigorous proof of these properties remains

an open problem.

To the knowledge of the authors, the method presented in this paper is the only adaptive algorithm for

Hamilton–Jacobi equations with general Hamiltonians based on a rigorous a posteriori estimate of its
error. In [4], the reader can find the study of the method in the simpler setting of one space dimension.

An adaptive method for the Hamilton–Jacobi–Bellman equation, based on rigorous error estimates, was

obtained by Grüne [8] and later extended to the time-dependent case in [10]; see also [9]. Adaptive methods

for the time-dependent Hamilton–Jacobi equations have been developed by Tang et al. [16]. Even though

their adaptive strategy is not based on a rigorous error estimate, their results are very impressive. The

approximate a posteriori error estimator we use to drive our adaptivity could be easily incorporated into

their approach.

The rest of the paper is organized as follows. In Section 2, we describe the details of each component of
the main features of the method, namely the monotone numerical scheme that we use, the use of approx-

imate a posteriori error estimate, and the way we update the mesh. In Section 3, we carry out a thorough

numerical study of its performance on several test problems. Finally, in Section 4 we end with some con-

cluding remarks.
2. The adaptive method

For any given tolerance s > 0, the adaptive method proceeds as follow:

(0) Construct an initial mesh Xh.

(1) Compute an approximate solution uh on Xh.

(2) If Uh(uh) 6 s then take uh as the approximation sought and stop.

(3) Otherwise, compute a new mesh Xh, and go to (1).

In the rest of this section we describe all these steps in details, namely we explain the numerical method
that we use to compute the approximate solution, the approximate a posteriori error estimate Uh(uh), and

B. Cockburn, B. Yenikaya / Journal of Computational Physics 209 (2005) 391–405 393
most importantly how we compute a new mesh. But first, we begin by defining the viscosity solution of the

problem under consideration.
2.1. The viscosity solution

To state the definition of the viscosity solution of the model equation (1), we need the definition of semi-

differentials of a function. We follow the same notation as in [4] for this section and for the section on a

posteriori error estimate. The super-differential of a function u at a point x 2 R2, D+u(x), is the set of all

vectors p in R2 such that
lim sup
y!x

uðyÞ � fuðxÞ þ ðy � xÞ � pg
ky � xk

� �
6 0;
and the sub-differential of a function u at a point x 2 R2, D�u(x), is the set of all vectors p in R2 such that
lim inf
y!x

uðyÞ � fuðxÞ þ ðy � xÞ � pg
ky � xk

� �
P 0.
Also we need the following quantity before we define the viscosity solution:
Rðu; x; pÞ ¼ uðxÞ þ HðpÞ � f ðxÞ

which is just the residual of u at x if p = $u(x).

Definition 2.1 (The viscosity solution [5]). A viscosity solution of the Hamilton–Jacobi equation (1) is a

continuous periodic function on R2 such that, for all x in R2,
þRðu; x; pÞ 6 0 8p 2 DþuðxÞ; and � Rðu; x; pÞ 6 0 8p 2 D�uðxÞ.

If both the Hamiltonian H and the right-hand side f of (1) are Lipschitz, then the viscosity solution

exists. See [5] and the references therein for more general results.
2.2. A monotone scheme

We use Lax–Friedrich�s type monotone scheme on triangular meshes introduced by Abgrall [1]. Here we

define the numerical scheme, but we leave out its derivation and convergence properties. We refer interested

reader to [1] for more details.

Let Th be a triangulation of (0, 1) · (0, 1) and fMigni¼1 be the set of nodes. For a fixed i, let fT lgkil¼0 be the
set of triangles having Mi as a vertex, see Fig. 1. To this set of triangles is associated a family of angular

sectors fOlgkil¼0 defined as the inner sectors at Mi of all the triangles in fT lgkil¼0. Let hl denote the angle of Ol,

and let us assume that the indexing of the angular sectors is done clock-wise so that hl > 0, andPki
l¼0hl ¼ 2p. We denote the unit vector of the half-line Ol \ Olþ1 by ~nlþ1=2, and we define bl+1/2 as
blþ1=2 ¼ tan
hl
2

� �
þ tan

hlþ1

2

� �
; l ¼ 0; . . . ; ki;
where ki + 1 is associated with 0. For any function / let /i := /(Mi), i = 1, . . . , n. We consider the function

u, the solution we seek, to be piecewise linear on Th, therefore its gradient is piecewise constant. Let ruTl be

the constant value of the gradient of u on the triangle Tl.
The numerical scheme is defined as follows:
ui þHðuiÞ ¼ fi; i ¼ 1; . . . ; n; ð3Þ

where

Tl

Tl+1

ql+1

ql

Mi

Tl+2

nl+1/2
→

Fig. 1. Structure of the triangular mesh around a node Mi.

394 B. Cockburn, B. Yenikaya / Journal of Computational Physics 209 (2005) 391–405
HðuiÞ ¼ H

Pki
l¼0hlruT l

2p

 !
� x

Xki
l¼0

blþ1=2

ruT l þruT lþ1

2

� �
�~nlþ1=2.
Here the artificial viscosity term x is defined as
x ¼ CðLÞ
p

; ð4Þ
where C(L) is a Lipschitz constant for H on the set fp 2 R2 : kpk < 1g.
SinceH is non-linear for our test problems, the scheme is implicit. Therefore we use Newton�s Method to

solve the non-linear system iteratively. To solve the linear equations, we used the GMRES method as

implemented in the package SPARSKIT2, created by Youcef Saad [14].
2.3. The approximate a posteriori error estimate

In this subsection, we present the rigorous a posteriori error estimate obtained in [2], and then the

approximate a posteriori error estimate that we use. We start by introducing several quantities that we need

to state the error estimate. First, we introduce the following semi-norms:
ju� vj� ¼ supx2XðuðxÞ � vðxÞÞþ; ju� vjþ ¼ supx2XðvðxÞ � uðxÞÞþ;
where w+ ” max{0, w}, and X ¼ R2. We consider X = (0, 1) · (0, 1) because of the periodicity.

Then we define a generalization of the residual
R�ðu; x; pÞ ¼ uðxÞ þ HðpÞ � f ðx� �pÞ 1
2
ejpj2; ð5Þ
which we call the shifted residual.

And finally, we introduce the paraboloid,
Pvðx; p; k; yÞ ¼ vðxÞ þ ðy � xÞ � p þ k
2
jy � xj2; y 2 R2; ð6Þ
where x is a point in R2, p is a vector of R2, and k is a real number.

B. Cockburn, B. Yenikaya / Journal of Computational Physics 209 (2005) 391–405 395
The rigorous a posteriori error estimate is stated in the following theorem.

Theorem 2.2 (A posteriori error estimate [2]). Let u be the viscosity solution of the model equation (1)

and let v be any continuous function on R2 periodic in each coordinate with period 1. Then, for

r 2 {�, +},
ju� vjr 6 inf �P0Urðv; �Þ; ð7Þ
where
Urðv; �Þ ¼ supðx;pÞ2Arðv;�ÞðrRreðv; x; pÞÞþ. ð8Þ
The set Ar(v; �) is the set of elements (x, p) satisfying
x 2 X;

rfvðyÞ � Pvðx; p; r=�; yÞg 6 0 8y 2 R2.
(For � = 0, we only require the first condition and that p 2 Drv(x).)

Note that the above result implies that
ku� vkL1ðXÞ 6 UðvÞ;
where
UðvÞ ¼ max inf
�P0

Uþðv; �Þ; inf
�P0

U�ðv; �Þ
� �

.

In practice, we do not use the above functional U, but an approximation Uh, also introduced in [2]. The

functional Uh is given by
UhðvÞ ¼ max inf
�2eh

Uh;þðv; �Þ; inf
�2eh

Uh;�ðv; �ÞÞ
� �

.

Rather than taking the parameter � in the interval [0, 1), we take it in the discrete set eh, where
eh ¼ fi � E=N ; 0 6 i 6 Ng;

where
E ¼ 2hxj lnðhxÞj and N ¼ 4j lnðhxÞj.

Here x is the artificial diffusion coefficient used in the numerical scheme (4), and h is the size of the largest

element in the triangulation. This choice of eh is motivated in [2].

It remains to describe the functional Uh,r(v, �). These functional are obtained from the functional Ur(v, �)
by simply replacing the set Arðv; �Þ by the set Uh,r(v; �) which is defined as the set of elements (x, p)

satisfying
x 2 Xc;

rfðvðyÞ � Pvðx; p; r=�; yÞg 6 0 8y 2 Xc : jy � xj 6 2kvkLipðXÞ�;
where Xc is the set of barycenters of the elements in the triangulation. Note that since we assume uh to be

piecewise linear, when v = uh and x is the center of a triangle Tl, then the only element in Drv(x) is
p = Duh(x), the gradient of uh on the element Tl. Hence we have a very simple way to both compute the

shifted residual, and find the set Ah;rðv; �Þ. Note also that if we replace Xc by X, the above test is equivalent
to the original test in Theorem 2.2; see [2].

396 B. Cockburn, B. Yenikaya / Journal of Computational Physics 209 (2005) 391–405
2.4. Computing a new mesh

Given a mesh Xk
h, we compute an approximate solution ukh by using the numerical scheme (3). If

UhðukhÞ P s, we must compute a new mesh, Xkþ1
h . In [4], where we considered the 1-D case, we computed

a new grid by properly denning a positive function C in terms of the old mesh, solving the equation
1

C
d

dx
N ¼ 1 in ð0; 1Þ; where Nð0Þ ¼ 0; ð9Þ
and, finally, setting
fxj ¼ N�1ðjÞgnj¼1;
where n is the smallest natural number greater or equal to Nð1Þ. A natural extension of such procedure

would be to replace the above boundary value problem with using the Eikonal equation
1

C
jrNj ¼ 1 in X; where N ¼ 0 on oX.
Mesh-generation algorithms using (more sophisticated versions of) this idea had already been proposed and

tested by Hoch and Rascle [11] with very impressive results. To give a rough idea of how to do this, take X
to be R2 n P . Then
NðQÞ ¼
Z Q

P
Cdc;
where the integral is evaluated along the segment joining P and Q. If C = 1/h, the points Q for which

NðQÞ ¼ 1 form nothing but the circle of radius h centered at the point P. Then, six equilateral triangles

could be easily formed with one of their vertices being the point P. Repeating this process, we could mesh

R2 with equilateral triangles. If we take C equal to 1/hk, where the mesh-size function hk is a piecewise con-

stant function equal to the size of the longest edge of the triangle T of the mesh Xk
h, then we can generate a

new mesh with a similar technique. If we want to modify the mesh Xk
h according to the mesh modification

function l, we could take C equal to l/hk. In this case, the quantity
lðP ;QÞ ¼
Z Q

P

lðsÞ
hkðsÞ

dr
can be thought of as being a normalized distance P and Q and what we want is to generate a mesh on which

the normalized length of each edge of elements is equal to 1. As an example, consider the case when the

function l is identically equal to an integer m. Then the normalized lengths of the edges of the old mesh,

Xk
h, are equal to m. Therefore the new mesh should have elements m times smaller than the elements of the

old one. Since the function l determines how the old mesh is to be modified, it is called the mesh modifi-

cation function.

In this paper, we do not follow the strategy proposed in [11]. Instead, we use a somewhat related, but

different, algorithm which is implemented in the mesh generation package Gmsh, created by Christophe

Geuzaine and Jean-François Remacle [7]. First, we generate the mesh of the boundary of the domain with

the same algorithm used for 1-D problems in [4]. Then, we generate a coarse initial mesh of the domain with

no interior points by a constrained Delaunay algorithm [15], which keeps the boundary mesh unchanged.

We add new points, namely, the centroid of the elements of the current mesh whose normalized size is bigger
than 1 by using the Bowyer-Watson algorithm [13]. We do this until the normalized lengths of all the edges

are less than or equal to one. See [6] for more details on this algorithm as implemented in Gmsh.

It only remains to describe how to define the mesh modification function. We take l(s) = W(ck(s)),
where

Table

Test p

Proble

(1)

(2)

(3)

(4)

B. Cockburn, B. Yenikaya / Journal of Computational Physics 209 (2005) 391–405 397
ckðsÞ ¼ 1

s
min maxBl jRlm j;UhðukhÞ

� �
ð10Þ
for s 2 Tl, where the set Bl consists of the element Tl, three immediate neighboring elements of Tl, and the
neighboring elements of those three. Here, the value of the residual on any triangle T lm is denoted by Rlm .

Moreover, W is given by
WðtÞ ¼ tð1þ
ffiffiffiffiffiffiffiffiffiffi
t � 1

p
Þ; t > 1;

tþ3
4
; 0 6 t 6 1.

(

See [4] for a thorough discussion of this function. This choice works equally well for both 1-D and 2-D

problems as indicated by the numerical results in the next section. We use this choice of W after the second

step. For the first two steps, we use W(t) = t since, typically, the corresponding mehses we use are very

coarse the function ck is already quite large.

If we start the algorithm with a very coarse mesh, then the mesh generated after the first iteration is not

regular. This irregularity propagates into the next iterations and affects the quality of the meshes. Therefore
we find it helpful to replace the adaptive irregular mesh at the second step with a uniform mesh with the

same number of nodes. This improves the quality of the adaptive meshes in the successive iterations, how-

ever it does not alter the convergence properties of the method.
3. Numerical results

3.1. The test problems

We test our algorithm on four test problems; see Table 1. Problem 1 is one of the 1-D problems tested in

[4], now extended to 2-D. We consider this problem to see whether or not the one-dimensional mesh struc-

ture is actually preserved when we use the two-dimensional version of the adaptive method. Then, to study

the performance of the algorithm on two-dimensional problems, we consider three other problems. We con-

sider a problem with a smooth solution, Problem 2, as well as two problems with kinks in the viscosity solu-

tion, Problems 3 and 4. Note that our problem set contains problems with both convex and non-convex

Hamiltonians.
3.2. Results with the adaptive method

We begin by testing the quality of the a posteriori error estimate. To do that, we study the behavior of

the effectivity index
eihðu; uhÞ ¼
UhðuhÞ

ku� uhkL1ðXhÞ
1

roblems

m H(p) Right-hand side f(x, y) Viscosity solution u(x, y)

�p21=4p
2 cos4(px) cos2(px)

p21 þ p22 (sin(2px) + cos(2py))/2p + cos2(2px) + sin2(2py) (sin(2px) + cos(2py))/2p
ðp21 þ p22Þ=p2 �jcos(px)j � jcos(py)j + sin2(px) + sin2(py) �jcos(px)j � jcos(py)j
�jpj4 + 2jpj2 � 1 u(x, y) � sin4(p(x + y))/4 + sin2(p(x + y)) � 1 �jcos(p(x + y))j/2p

398 B. Cockburn, B. Yenikaya / Journal of Computational Physics 209 (2005) 391–405
on approximate solution obtained with uniform meshes. In Table 2, we see that, as expected, the order of

the scheme is one, and that the a posteriori error estimate is reasonable given that its values remain close to

1 and do not increase, or increase very slowly, when the mesh is refined.

Next, we compare the performance of the adaptive method in the 1-D and the 2-D cases. In Fig. 2, we

show the results for the first test problem on Table 1 with s = 2.5E�2 for both cases. We see that the results
for 2-D case are qualitatively similar to those for 1-D. Indeed, they exhibit a 1-D structure since their main

features are essentially constant along any line parallel to the y-axis. This gives a strong indication that it is

reasonable to expect that the remarkable results obtained for the 1-D case will also hold in the 2-D case, in

spite of the use of triangular unstructured meshes and a different algorithm to compute them.

Finally, in Table 3, we display the results obtained by applying the adaptive method to the four test

problems. The method is tested for the tolerance values s = 10E�2, 5E�2, and 2.5E�2. We measure the

success of the method by considering two effectivity indexes. The first is
Table

Histor

Proble

(1)

(2)

(3)

(4)
eisðs; u; uhÞ ¼
s

ku� uhkL1ðXhÞ
;

and shows whether the strict error control is achieved. From Table 3, we see that this index is always bigger

than 1. In other words, the method enforces a strict error control and is thus reliable. The second effectivity
index we consider is
2

y of convergence for uniform grids

m n ku� uhkL1ðXhÞ Order eih(u, uh)

202 9.3E�2 0.00 1.08

402 4.8E�2 0.94 1.05

802 2.5E�2 0.98 1.04

1602 1.2E�2 0.99 1.03

3202 0.2E�3 0.99 1.03

6402 3.1E�3 1.00 1.03

12802 1.6E�3 1.00 1.03

202 3.8E�1 0.00 1.82

402 1.9E�1 0.98 1.92

802 l.0E�1 0.98 1.95

1602 5.0E�2 0.99 1.92

3202 2.5E�2 0.99 1.86

6402 1.2E�2 0.99 1.80

12802 6.0E�3 1.00 1.75

202 3.8E�1 0.00 1.46

402 1.9E�1 0.97 1.46

802 l.0E�1 0.98 1.67

1602 5.0E�2 0.99 2.11

3202 2.5E�2 0.99 2.13

6402 1.2E�2 1.00 2.15

12802 6.0E�3 1.00 2.60

202 2.3E�1 0.00 1.07

402 1.2E�1 0.92 1.91

802 6.1E�2 0.97 1.55

1602 3.1E�2 0.98 1.96

3202 1.6E�2 0.99 2.52

6402 7.8E�3 1.00 3.13

12802 3.9E�3 1.00 3.35

Fig. 2. The final step of Problem 1 for s = 2.5E�2: one- (top) and two-dimensional (bottom) algorithms.

Table 3

Results of the adaptive method

Problem s n ku� uhkL1ðXhÞ Order eis eiadap Steps cmplxr

(1) 10.0E�2 392 8.2E�2 – 1.20 1.01 3 1.96

5.0E�2 1475 4.1E�2 1.06 1.21 1.00 3 1.82

2.5E�2 7032 1.9E�2 1.01 1.34 1.06 4 2.43

(2) 10.0E�2 17499 4.6E�2 – 2.16 1.10 6 3.78

5.0E�2 64830 2.3E�2 1.06 2.16 1.06 5 2.99

2.5E�2 292324 l.0E�2 1.02 2.33 1.20 5 2.84

(3) 10.0E�2 14483 6.9E�2 – 1.44 1.08 4 2.23

5.0E�2 65241 3.0B-2 1.09 1.64 1.16 5 2.60

2.5E�2 186660 1.6E�2 1.16 1.51 1.03 4 2.30

(4) 10.0E�2 3690 6.5E�2 – 1.53 1.22 4 2.03

5.0E�2 11863 3.4E�2 1.07 1.44 1.07 3 1.42

2.5E�2 41569 1.7E�2 1.14 1.48 1.08 3 1.66

B. Cockburn, B. Yenikaya / Journal of Computational Physics 209 (2005) 391–405 399

Fig. 3. Actual adaptive meshes (left column) and their mesh-size functions log10(h) (right column) for Problem 2 (top), Problem 3

(middle), and Problem 4 (bottom).

400 B. Cockburn, B. Yenikaya / Journal of Computational Physics 209 (2005) 391–405

Fig. 4. The final step for s = 5.0E�2, for Problem 2 (top), Problem 3 (center), and Problem 4 (bottom).

B. Cockburn, B. Yenikaya / Journal of Computational Physics 209 (2005) 391–405 401

Fig. 5. The final step for s = 2.5E�2, for Problem 2 (top), Problem 3 (center), and Problem 4 (bottom).

402 B. Cockburn, B. Yenikaya / Journal of Computational Physics 209 (2005) 391–405

4 4.5 5 5.5 6
–2

–1.8

–1.6

–1.4

–1.2

log
10

(n)

lo
g 10

(
er

ro
r

)

Problem 2

4 4.5 5 5.5 6
–1.8

–1.6

–1.4

–1.2

–1

log
10

 (n)

lo
g 10

 (
 Φ

h (
 u

h)
)

Problem 2

4 5 6
–2

–1.6

–1.2

–0.9

log
10

(n)

lo
g 10

(
er

ro
r

)

Problem 3

4 5 6
–1.7

–1.4

–1.1

–0.9

log
10

 (n)

lo
g 10

 (
 Φ

h (
 u

h)
)

Problem 3

3.5 4 5 5.5

–1.8

–1.4

–1

log
10

(n)

lo
g 10

(
er

ro
r

)

Problem 4

3.5 4.5 5.5 6

–1.6

–1.2

–1.6

–1.2

log
10

 (n)

lo
g 10

 (
 Φ

h (
 u

h)
)

Problem 4

Fig. 6. Comparison of convergence rates: uniform (dashed line) and adaptive (solid line) refinement.

B. Cockburn, B. Yenikaya / Journal of Computational Physics 209 (2005) 391–405 403

404 B. Cockburn, B. Yenikaya / Journal of Computational Physics 209 (2005) 391–405
eiadapðs; uhÞ ¼
s

UhðuhÞ
;

which is a measure of the quality of the adaptive method. We see that this index is remarkably close to the

ideal value 1, in spite of the variation of the value of the tolerance. This is an indication that the method is
efficient. To further explore this issue, we need to observe the distribution of the error and the residual on

the entire domain. We plot these in Figs. 4 and 5. (In Fig. 3, we show some meshes and the logarithm of

their respective mesh size functions to give an idea of the meaning of such plots.) We see that the mesh mod-

ification function W(c) is very close to the ideal value 1 almost everywhere. This indicates that any further

modification of the mesh would result in very insignificant changes.

The above discussion refers only to the last step of the adaptive method. To measure the efficiency of the

whole method we need to consider the computational complexity necessary to carry out all the steps. Since,

in our case, the computational complexity is proportional to the number of nodes in the mesh, we introduce
the quantity
cmplxr ¼
PK

k¼1n
K

nK
;

where nk is the number of nodes of the mesh of the step k, and K is the number of steps needed for con-

vergence. We use this quantity to compare the computational complexity needed to carry out all the steps of
the method to the computational complexity needed to carry out the last one. A bigger complexity ratio

indicates a less efficient adaptive method. In the last two columns of Table 3, we display the numbers of

steps needed for convergence and the complexity ratio. We see that the complexity ratio is always less than

4, independently of the problem and the value of the tolerance. In other words, the observed complexity of

the method is optimal.

In our implementation, the CPU time to compute the approximate solution was smaller than that needed

to compute the a posteriori error estimate. This, in turn, was significantly smaller than the computation of

the new mesh.

3.3. Adaptivity versus uniform refinement

In this subsection we compare the performance of our adaptive method and that of using uniform

meshes. In all our computations uniform triangular meshes are generated by drawing the diagonals of uni-

form rectangular meshes.

In Fig. 6, we make this comparison by considering both the exact error ku� uhkL1ðXhÞ and the approxi-

mate a posteriori error estimate, Uh(uh). We see that the adaptive method is more efficient in all the cases.
For Problem 3, when considering the exact error for large tolerances both methods seem to perform simi-

larly. However, when the tolerance becomes smaller the adaptive method becomes more efficient. This slight

disadvantage at the beginning is actually compensated by a significant success when considering the approx-

imate a posteriori error estimate. Hence over all the adaptive method is considerably more efficient.
4. Conclusions and extensions

In this paper, we have extended the adaptive method proposed in [4] to two-dimensional steady-state

Hamilton–Jacobi equations. The method has been shown to guarantee a rigorous error control and to

be extremely reliable and efficient for a wide variation of the tolerance parameter even in the presence of

kinks in the viscosity solution with non-convex Hamiltonians. From these results, it is reasonable to expect

that the extension of the algorithm to higher-dimensional problems will display a similar performance. A

similar remark can be made about extending these results to Hamiltonians depending on both x and u.

B. Cockburn, B. Yenikaya / Journal of Computational Physics 209 (2005) 391–405 405
The extension of this work to bounded domains could be done when the corresponding a posteriori error

estimate becomes available. Such an estimate can actually be obtained in some simple cases, but the general

case still remains an open problem. In the time-dependent case, straightforward extensions of the monotone

scheme (3) can be used. However, in this case the time-space grids must be allowed to vary locally and the

schemes must be properly modified to handle them. The a posteriori error estimate obtained in [3] can be
used. Although we have focused on monotone schemes, the adaptive method proposed here can be easily

applied to high-order accurate methods like the discontinuous Galerkin method developed in [12]. The

above extensions constitute the subject of ongoing work.
Acknowledgments

The authors would like to give special thanks to Christophe Geuzaine for providing a source code for
Gmsh and for his help in the installation and execution of the code. They would also thank Lars Grüne

and Tao Tang for bringing their work on Hamilton–Jacobi equations to their attention.
References

[1] R. Abgrall, Numerical discretization of the first-order Hamilton–Jacobi equations on triangular meshes, Comm. Pure Appl. Math.

49 (1996) 1339–1377.

[2] S. Albert, B. Cockburn, D. French, T. Peterson, A posteriori error estimates for general numerical methods for Hamilton–Jacobi

equations. Part I: The steady state case, Math. Comput. 71 (2002) 49–76.

[3] S. Albert, B. Cockburn, D. French, T. Peterson, A posteriori error estimates for general numerical methods for Hamilton–Jacobi

equations. Part II: The time-dependent case, in: R. Herbin, D. Kröner (Eds.), Finite Volumes for Complex Applications, vol. III,

Hermes Penton Science, 2002, pp. 17–24.

[4] B. Cockburn, B. Yenikaya, An adaptive method with rigorous error control for the Hamilton–Jacobi equations. Part I: The one-

dimensional steady state case, Appl. Numer. Math. 52 (2005) 175–195.

[5] M.G. Crandall, L.C. Evans, P.-L. Lions, Some properties of viscosity solutions of Hamilton–Jacobi equations, Trans. Amer.

Math. Soc. 282 (1984) 487–502.

[6] P.L. George, Tet meshing: construction, optimization, and adaptation, in: Proceedings of the 8th International Meshing

Rountable, 1999, pp. 133–141.

[7] C. Geuzaine, J.-F. Remacle, Gmsh reference manual: the documentation for Gmsh, a finite element mesh generator with built-in

pre- and post-processing facilities. Available from: <http://www.geuz.org/gmsh/>.

[8] L. Grüne, An adaptive grid scheme for the discrete Hamilton–Jacobi–Bellman equation, Numer. Math. 75 (1997) 319–337.

[9] L. Grüne, Adaptive grid generation for evolutive Hamilton–Jacobi–Bellman equations, in: M. Falcone, Ch. Makridakis (Eds.),

Numerical Methods for Viscosity Solutions and Applications, World Scientific, 2001, pp. 153–172.

[10] L. Grüne, Error estimation and adaptive discretization for the discrete stochastic Hamilton–Jacobi–Bellman equation, Numer.

Math. 99 (2004) 85–112.

[11] PH. Hoch, M. Rascle, Hamilton–Jacobi equations on a manifold and applications to grid generation or refinement, SIAM J. Sci.

Comput. 23 (2002) 2055–2073.

[12] C. Hu, C.-W. Shu, A discontinuous Galerkin finite element method for Hamilton–Jacobi equations, SIAM J. Sci. Comput. 21

(1999) 666–690.

[13] S. Rebay, Efficient unstructured mesh generation by means of Delaunay triangulation and Bowyer-Watson algorithm, J. Comput.

Phys. 106 (1) (1993) 125–138.

[14] Y. Saad, Sparskit: a basic tool kit for sparse matrix computations. Available from <http://www-users.cs.umn.edu/saad/software/

SPARSKIT/sparskit.html>.

[15] J.R. Shewchuk, Constraint Delaunay tetrahedralization and provably good boundary recovery, in: Proceedings of the 11th

International Meshing Roundtable, 2002, pp. 193–204.

[16] H.-Z. Tang, T. Tang, P.-W. Zhang, An adaptive mesh redistribution method for nonlinear Hamilton–Jacobi equations in two-

and three-dimensions, J. Comput. Phys. 188 (2003) 543–572.

http://www.geuz.org/gmsh/
http://www-users.cs.umn.edu/saad/software/SPARSKIT/sparskit.html
http://www-users.cs.umn.edu/saad/software/SPARSKIT/sparskit.html

	An adaptive method with rigorous error control for the Hamilton -- Jacobi equations. Part II: The two-dimensional steady-state case
	Introduction
	The adaptive method
	The viscosity solution
	A monotone scheme
	The approximate a posteriori error estimate
	Computing a new mesh

	Numerical results
	The test problems
	Results with the adaptive method
	Adaptivity versus uniform refinement

	Conclusions and extensions
	Acknowledgments
	References

